
Team
Andromeda

User Manual

May 7, 2020

Clients - Dr. Audrey Thirouin and Dr. Will Grundy
Mentor - Isaac Shaffer
Members - Matthew Amato-Yarbrough, Batai Finley, Bradley Kukuk, John
Jacobelli, and Jessica Smith

1. Introduction 1

2. Installation 1
2.1 Licht-cpp Installation 1
2.2 NLM 6
2.3 GUI Installation 7

3. Configuration and Daily Operation 8
3.1 Licht-cpp 8
3.2 Triaxial Ellipsoids 9
3.3 NLM 13
3.4 GUI 17
3.5 Video Generator 20

4. Maintenance 21
4.1 Licht-cpp Dependencies 21
4.2 NLM Dependencies 2​2
4.3 GUI Dependencies 2​2

5. Troubleshooting 2 ​2
5.1 Forward Model 2​2
5.2 Triaxial Ellipsoids 2​4
5.3 NLM 2​4
5.4 GUI 2​5

6. Conclusion 2 ​6

1. Introduction
We are pleased you have chosen licht-cpp for your business needs. Licht-cpp is a
powerful API for modeling and visualization of binary asteroid systems that has
been custom-designed to meet your needs. Some of the key highlights include:

● A graphical user interface (GUI) that allows easy input for a function that
predicts a lightcurve for a single or binary asteroid system

● Renders that are traced by pixel to provide highly accurate light curves
● Uniquely solves precision issues that stem from distance
● Extremely efficient ray-tracer with generated shapes and CPU parallelization
● A nonlinear minimizer (NLM) to find best fitting parameters based on

observed data
● The option to display the output from the NLM to a plot, file, or to the

terminal
● Ability to create a video of the system’s motion
● Three distinct shape types for modeling usage
● An automatic plot of the light curve on the GUI

The purpose of this user manual is to help you, the client, successfully install,
administer, and maintain the licht-cpp codebase in your actual business context
going forward. Our aim is to make sure that you are able to benefit from our
product for many years to come!

2. Installation
2.1 Licht-cpp Installation
As part of final delivery, licht-cpp should have been installed on a platform of your
choice. Over time, however, you may want to move to a new platform or re-install
the product.

Licht-cpp is a cross-platform solution that requires a C++ compilation environment
using CMake. Ultimately, to install licht-cpp the following commands must be run:

● cd licht-cpp/build
● cmake ..
● make

1

To accomplish this, follow the set-up for a CMake environment for your system
below.

Debian-based systems
● sudo apt install cmake

RedHat-based systems
● dnf install clang clang-devel # If you want to use clang
● dnf install libomp-devel # If openmp is not installed
● dnf install cmake

CentOS 6/7
Install g++ 8

● sudo yum install centos-release-scl
● sudo yum-config-manager --enable rhel-server-rhscl-7-rpms
● sudo yum install devtoolset-8

Update terminal
● scl enable devtoolset-8 bash

Install CMake 3.X
● http://jotmynotes.blogspot.com/2016/10/updating-cmake-from-2811-to-362

-or.html

Windows
Essentially, Windows needs a MinGW setup that supports pthreads, make, and
openmp. To do this, first install the MinGW installation manager
(​https://osdn.net/dl/mingw/mingw-get-setup.exe​). Then install the following
packages. Many come with the base system of MinGW and MSYS, but they are
pasted here for verbosity:

● mingw-developer-toolkit-bin
● mingw32-autoconf-bin
● mingw32-automake-bin
● mingw32-autotools-bin
● mingw32-base-bin
● mingw32-binutils-bin
● mingw32-gcc-bin
● mingw32-gcc-lic
● mingw32-gcc-g++-bin
● mingw32-gdb-bin
● mingw32-gettext-bin

2

http://jotmynotes.blogspot.com/2016/10/updating-cmake-from-2811-to-362-or.html
http://jotmynotes.blogspot.com/2016/10/updating-cmake-from-2811-to-362-or.html
https://osdn.net/dl/mingw/mingw-get-setup.exe

● mingw32-gettext-dev
● mingw32-libatomic-dll
● mingw32-libexpat-dll
● mingw32-libgcc-dll
● mingw32-libgettextpo-dll
● mingw32-libgmp-dll
● mingw32-libgomp-dll
● mingw32-libiconv-bin
● mingw32-libiconl-dev
● mingw32-libiconv-dll
● mingw32-libintl-dll
● mingw32-libisl-dll
● mingw32-libtldl-dev
● mingw32-libltdl-dll
● mingw32-libmpc-dll
● mingw32-libmpfr-dll
● mingw32-libpthreadgc-dev
● mingw32-libpthreadgc-dll
● mingw32-libquadmath-dll
● mingw32-libssp-dll
● mingw32-libstdc++-dll
● mingw32-libtool-bin
● mingw32-libz-dll
● mingw32-make-bin
● mingw32-mingw-get-bin
● mingw32-mingw-get-gui
● mingw32-mingw-get-lic
● mingw32-mingwrt-dev
● mingw32-mingwrt-dll
● mingw32-pthreads-w32-dev
● mingw32-pthreads-w32-lic
● mingw32-w32apidev
● mingw32-wslfeatures-cfg
● msys-autogen-bin
● msys-base-bin
● msys-bash-bin
● msys-bison-bin
● msys-bsdcpio-bin
● msys-bsdtar-bin
● msys-bzip2-bin
● msys-core-bin

3

● msys-core-doc
● msys-core-ext
● msys-core-lic
● msys-coreutils-ext
● msys-cvs-bin
● msys-diffstat-bin
● msys-diffutils-bin
● msys-dos2unix-bin
● msys-file-bin
● msys-findutils-bin
● msys-flex-bin
● msys-gawk-bin
● msys-grep-bin
● msys-guile-bin
● msys-gzip-bin
● msys-inetutils-bin
● msys-less-bin
● msys-libarchive-dll
● msys-libbz2-dll
● msys-libcrypt-dll
● msys-libexapt-dll
● msys-libgdbm-dll
● msys-libgmp-dll
● msys-libguile-dll
● msys-libguile-rtm
● msys-libiconv-dll
● msys-libintl-dll
● msys-libltdl-dll
● msys-liblzma-dll
● msys-libmagic-dll
● msys-libminires-dll
● msys-libopenssl-dll
● msys-libopts-dll
● msys-libpopt-dll
● msys-libregex-dll
● msys-libtermcap-dll
● msys-libxml2-dll
● msys-lndir-bin
● msys-m4-bin
● msys-make-bin
● msys-mktemp-bin

4

● msys-openssh-bin
● msys-openssl-bin
● msys-patch-bin
● msys-perl-bin
● msys-rsync-bin
● msys-sed-bin
● msys-tar-bin
● msys-termcap-bin
● msys-texinfo-bin
● msys-vim-bin
● msys-cz-bin
● msys-zlib-dll

Then install CMake: ​https://cmake.org/download

Compilation is done via the MSYS shell located at ‘C:\MinGW\msys\1.0\msys.bat’.
Once in its bash shell, the C:\ drive can be accessed with ‘cd /c’. Navigate to the
licht-cpp build directory and call ‘cmake .. -G “MSYS Makefiles”’. This only has to be
configured once.

General Configuration
With the right packages now installed, the build system must be configured.

Set CC/CXX compiler
This step is only sometimes needed, as it depends if the system already has a global
compiler variable. The codebase is tested on both g++ and clang++. Either may be
used. If not already defined, a common way to add a global variable is to modify
~/.bashrc.

Make
CMake is used to build the code. The make step produces a unit test executable
(tester) and a shared library (liblicht-cpp.so). CMake can be used as follows:

● cd licht-cpp/build
● cmake ..
● make # add -jX where X is twice the number of your CPU cores

Run
To run the unit tests, call tester. Otherwise, just interface with liblicht-cpp.so. When
calling tester, it is important to be within the build directory, as the file paths
within the test are relative to it.

5

https://cmake.org/download

Documentation
To generate documentation, run the below command from within licht-cpp/:

● doxygen Doxyfile # Generated in doc/

It generates five forms of documentation. The most useful form, in our opinion, is
HTML. Open doc/html/index.html to browse the documentation of this code base.
The large appendix that has been provided in the final report was generated by
converting licht-cpp/doc/latex/refman.tex to PDF. This can be done by using a
package called pdflatex.

2.2 NLM
Similar to licht-cpp, the NLM is also a solution that can be used on any platform.
There are only three requirements associated with using the NLM:

● A C++ compilation environment that utilizes CMake
● Python2.7 and Python2.7-dev, Matplotlib, and Numpy installed
● The compilation of the licht-cpp API

In order to start using the NLM, the user will first have to install Python2.7. This
includes the standard Python2.7 library, as well as the Python2.7-dev library. Along
with these Python installations, the user will have to install Matplotlib and Numpy.

To install Python2.7 and Python2.7-dev, we recommend downloading the packages
listed on the official Python website for Python 2.7.18. The Windows and macOS 1

installers found on the supplied page will install both Python 2.7 and Python2.7-dev.
However, to install Python2.7-dev for Debian and Redhat systems, the user will need
to run an additional command in the terminal:

● Debian systems: sudo apt-get install python2.7-dev
● Redhat systems: please refer to this official packages website 2

To install Matplotlib and Numpy, we recommend using pip due to it’s versatility 3

and reliability. To install these libraries using pip, you will need to run the following
commands in a terminal or command prompt window:

1 ​https://www.python.org/downloads/release/python-2718/
2 ​https://pkgs.org/download/python2-devel
3 ​https://pypi.org/

6

https://www.python.org/downloads/release/python-2718/
https://pkgs.org/download/python2-devel
https://pypi.org/

● Matplotlib : pip install matplotlib 4

● Numpy : pip install numpy 5

Once these libraries have been installed, the licht-cpp static library will need to be
built. This is done by following the instructions found in section 2.1 for installing
the licht-cpp API.

After installing the licht-cpp API, a static library called “liblicht-cpp.a” will be
created in the licht-cpp/build directory. This static library is required to run the
NLM as it provides the forward model functionality to the NLM.

Afterwards, the user can install the NLM using similar commands, but in a different
directory:

● cd licht-cpp/nlm/build
● cmake ..
● make

Documentation
To generate documentation, run the below command from within licht-cpp/nlm/:

● doxygen Doxyfile # Generated in doc/

It generates five forms of documentation. The most useful form, in our opinion, is
HTML. Open doc/html/index.html to browse the documentation of this code base.

2.3 GUI Installation
Similar to the licht-cpp library, the GUI is cross platform and available for use on
any platform. To compile the GUI , the user must have qmake3.0 or higher on their
system. Due to the difference in compilation, the GUI must be compiled after the
licht-cpp library is compiled. The GUI is reliant on the static library (.a file) that is
created when licht-cpp is compiled.

To compile the GUI:

● Compile forward model
● cd .. (Back into licht-cpp folder)

4 ​https://pypi.org/project/matplotlib/
5 ​https://pypi.org/project/numpy/

7

https://pypi.org/project/matplotlib/
https://pypi.org/project/numpy/

● cd GUI/
● qmake
● make

3. Configuration and Daily Operation
3.1 Licht-cpp
Given that licht-cpp is compiled into a static library that provides a single API
function, there is no need for configuration. The only additional configuration is to
compile the codebase in “Release” mode to enable some potentially unsafe
optimizations.

● This is done by calling “cmake .. -DCMAKE_BUILD_TYPE=Release”.
● To undo this, call “cmake .. -DCMAKE_BUILD_TYPE=RelWithDebInfo”.

For more information on what is ‘unsafe’ about this, topics to research are ‘-Ofast
vs -O3’ and ‘-funsafe-math-optimizations’. In general, if the tests still pass in
release mode, the mode is likely safe to use.

Before using the code, the test executable should be run to ensure the calculations
are calibrated on the machine. To do this, call “./tester” from within the build
directory and ensure all tests pass. If they do not, contact one of the developers, as it
likely indicates an implementation difference amongst compilers and needs to be
accounted for in the code.

To utilize the API function from the GUI or the NLM, please refer to sections 3.2 and
3.3 below for more information. Additionally, there exists extensive documentation
for each of these functionalities that is either automatically generated or written
and provided with the codebase.

Some particular aspects to keep in mind are:

● All arrays, except for the facet and vertice arrays, are indexed by the
numShapes variable.

○ If numShapes is 1, then the first element (or ‘step’, for arrays such as
spin poles) is accessed. If 2, then the first and second elements are
accessed. Thus, the minimum dimensionality of these arrays is
numShapes * stepSize. That is, more elements can be provided than
shapes, but only the numShapes indices are accessed.

8

○ The API logically cannot ‘default’ a secondary shape’s parameters to the

primary shape’s parameters. Thus, the user cannot just leave out the
secondary’s element with numShapes = 2. It is undefined behavior to
attempt this and there is no consistent implementation that can handle
this. It also cannot consistently be tested for from within the C-API. The
user is trusted to provide the correct dimensionality and numShapes.

● Wavefront files (.obj extension) are only supported in a very basic format.
○ Only the following lines are supported:

■ v x y z
■ f v1 v2 v3

○ Any other line is ignored. For example:
■ vn ...

○ Any deviations of the supported lines will likely result in a corrupt
shape. For example:

■ f v1//vn1 v2//vn2 v3//vn3
■ v x y z w (though this might still work)

○ Thus, the user will need to remove such complications before passing it
to the API. Keep in mind that applications like Blender often complicate
the format, even if the input was supported by the API.

● vfov, or the vertical field of view in degrees, does not need to be a
guessing-game

○ vfov = atan(3*radius / distance) will fill the majority of the frame
■ radius = max radius of both shapes
■ distance = distance to shape of interest, usually primary

The above information was provided from Paired Planet Tech’s User Guide from the
first iteration of the project. This was included for clarification about areas of the
project Team Andromeda did not work on. For more detail about particular aspects
augmented by Team Andromeda, please refer to the following sections.

3.2 Triaxial Ellipsoids
Triaxial ellipsoids are a great addition to the clients’ current software. Running the
software with the ellipsoid feature will help create more accurate models of
asteroids while maintaining a quick runtime. This part of the document will serve
as a guide to using ellipsoids and will detail their use.

Ellipsoids are similar to sphere and faceted objects because the user can specify
size, pole orientation, rotation, and Hapke parameters for an ellipsoid object.
Though similar, there are some differences from other shapes. This primarily refers
to differences between the orient and spin functions utilized by both ellipsoids and

9

faceted objects. The differences in the orient and spin functions affect how the
sizing, orientation, and rotation of the ellipsoid feature is calculated. To further
explain this, the following sections specify how to create and use an ellipsoid object
in the forward model.

Sizing
The forward model takes in the radii for
ellipsoids as a Vector3d type. This means
that the input looks like Figure 1. This is
referred to as the ​b ​variable.

The radii can be thought of as (x, y, z),
where the axes are defined using the
planes of reference in Figure 2.

Thus, the x-axis input controls horizontal
sizing, the y-axis input controls vertical
sizing, and the z-axis input controls
“depth” sizing. These axes are relative to
the camera. The z-axis referenced in
Figure 2 ​must ​ be the smallest axis of the
ellipsoid, as rotation happens along this
axis. As specified by the clients, the
shortest axis will be the axis of rotation for
ellipsoids.

Figure 1: Example of input for ellipsoid size

Figure 2: 3D Cartesian Coordinate System

10

Orientation
Orientation uses the equatorial coordinate
system. An image of the equatorial
coordinate system is shown in Figure 3 to
the right.

Since equatorial coordinates are used to
position the asteroid’s “north pole” and not
used to simply find a point in space, the
vernal equinox in Figure 3 should be
thought of as the “north pole”. The
asteroid’s “north pole” would then be
positioned via the equatorial coordinate
system.

For the ecliptic coordinate system
implemented for ellipsoids, orientation is
also specified using a Vector3d type, shown
below in Figure 4. The spin poles can be
defined as follows:

Figure 3: Equatorial Coordinate System

Figure 4: Declaration of the orientation pole in a forward model test

The spin pole specifies the right ascension and declination values of rotation.
Ellipsoid rotation is defined by radians, not degrees ​, so conversion must be
accounted for. The first input for spin pole specifies the declination (DEC in Figure
4), while the second input specifies the right ascension (RA in Figure 4). The third
value is a filler value due to a Vector3D type being needed for orientation, which
requires 3 values. To keep things simple, always use a 0 for the third value. To give a
brief overview of how this pole orientation is applied, an example is provided below.

11

Figure 5 is an image of a single object,
which was generated using ​this​ website.
Traditional ecliptic systems define lambda
as longitude and beta as latitude. In our
case, longitude is comparable to right
ascension and latitude is comparable to
declination.

Thus, the right ascension for Roxane is 220°
and the declination is -62°. Compared to
the images from the website, using right
ascension and declination as longitude and
latitude respectively provides an accurate
orientation for ellipsoids.

To imagine this, think of the asteroid’s
“north pole” being directly oriented at the
camera. First, the “north pole” is rotated
clockwise 220°, then downwards 62°.

Again, the rotations must be specified in
radians ​ to achieve expected rotation. This
will allow the ellipsoid to be properly
oriented so that rotation can work as
intended.

Figure 5: Roxane generated by the website

Figure 6: forward model rendered Roxane

Rotation
Ellipsoids rotate about the z-axis shown in
Figure 2. An ellipsoid depicted pre-pole
orientation is shown in Figure 6. In the
forward model, ​the ellipsoid rotates about
the x-axis ​ shown in Figure 6, which is the
same axis as the z-axis in Figure 2.

The ellipsoid will rotate about the x-axis
shown in Figure 6 if right ascension and
declination for the spin pole are both 0°.

Figure 6: Ellipsoid and its axes prior to pole

orientation

12

http://isam.astro.amu.edu.pl/

Single Asteroid Modeling
An interesting issue was encountered while developing ellipsoids and their use in
the forward model. When trying to render a single ellipsoid, an issue occured where
the ellipsoid was generated with extremely incorrect lighting and, therefore,
produced a faulty light curve. A way to solve this issue was discovered, which was
by including a second object. To remedy this, create an object (preferably a sphere as
they are the most simplistic) with the radius size of 0. This allows for the forward
model to recognize that there is a second object and provide correct lighting for the
ellipsoid, while not rendering the second object.

If there are any issues or any additional help is required regarding the triaxial
ellipsoid submodule, please refer to the troubleshooting section below. If there are
further questions, please refer to the emails listed at the end of the document and
feel free to contact either John Jacobelli or Jessica Smith.

3.3 NLM
The NLM module will provide our clients with several functionalities that were not
present in this project's previous iteration. The NLM will allow our clients to specify
forward model parameter values and choose which ones they want to be estimated.
Additionally, data produced by the NLM is capable of being plotted to a graph,
stored in a text file and saved. Renders of the binary systems created using
estimated parameter values may also be produced using previously implemented
forward model functionality. The following section will provide instructions for
this module’s installation and use.

User Input File
An important aspect to using the NLM is the user input supplied to it and the format
in which it is supplied. To increase the ease of use associated with using the NLM, a
user input file named “UserInput.txt” is included in the build directory. Figure 7
below illustrates the columns within the file, as well as four examples of what the
rows look like.

Figure 7: Format used by UserInput.txt file

13

Format
This file is formatted in a specific way in order to be parsed appropriately by the
Parser.hpp file within the NLM. The file is formatted in the following way:

Columns:

● ID: the number corresponding to each respective parameter
● Parameter: the parameters that are necessary to run the forward model
● Fit: a letter that is used to determine whether a parameter is being estimated

by the forward model
○ ‘N’ - represents a parameter that will not be estimated and will remain

constant
○ ‘Y’ - represents a parameter that will be estimated by the NLM
○ ‘U’ - represents a parameter that is unable and should not be attempted

to be estimated by the NLM
● Value: the value associated with a parameter

○ Parameters that ​are not​ being estimated will retain this value
throughout the run of the NLM

○ Parameters that ​are ​being estimated will use the specified value as a
starting value and will be adjusted by the NLM

● Step-size: the step-size for parameters that are being estimated
○ If a step-size is specified for parameters that have been chosen ​not​ to

be estimated will be ignored
○ Otherwise, the step-size will be used to increment the value as the NLM

determines its initial estimates

Note:​ The forward model includes parameters that are very sensitive to the values
input. As such, when deciding which values and step-sizes to use with the NLM, it is
important to use numbers that are appropriate for the parameter.

Rows:

● Parameters: individual values for each forward model parameter that are
specified by the user

○ Certain forward model parameters were split into two individual
parameters for the UserInput.txt. These parameters usually contain the
keywords “Primary” or “Secondary”. For example, the Hapke parameter
phaseAngle is split into phaseAnglePrimary and phaseAngleSecondary.

○ For the case of SpinPoles, the keywords “Primary” or “Secondary” are
used, as well as “A”, “B”, “C”. The individual characters represent each
value that is input for the SpinPole vectors in the form (A, B, C).

14

● Options: these are options that are specific to the running of the NLM.

○ ObservedData: this is where the user includes the path to the observed
data that is being used with the NLM. These files are best stored in the
licht-cpp/nlm/build/data directory for ease of input.

○ TerminalOuput, FileOutput, PlotOutput: these options are used to
specify how the output from the NLM is displayed or saved to the user’s
machine.

● Comments: these are allowed in the UserInput.txt file. Any line starting with
a '#' will be considered a comment and will be ignored by the parser.

Observed Data File
Observed data must be supplied to the NLM for it to have a set of data to compare
predicted light curves against. To do this the use of an observed data file containing
a binary systems information is needed. An example observed data file is provided
in the NLM data directory.

Figure 8: Format used by the observed date file

Format
This file is formatted in a specific way in order to be parsed appropriately by the
FileInput.hpp file within the NLM. The file is formatted in the following way:

Columns:

● Julian dates: the dates at which the corresponding magnitude values are
captured

● Magnitude values: the brightness value of an observed binary system
● Error bar values: a value describing the range of error a corresponding

magnitude value my vary by
● Label: one or more characters for distinguishing the light curves within the

file from each other

NLM Output
When using the NLM there are several means by which output can be accessed by
the user. This includes the graphs produced from plotting, the .txt file containing
the data for the predicted light curve, and the renders produced when running NLM

15

with the “renders” parameter set to true. Terminal output is not saved but instead
simply displayed to the terminal.

Plot Output
When the “plotOutput” flag in the UserInput.txt file is set to true, graphs
containing the predicted and observed light curves plotted will be saved. The graphs
will have an x-axis titled time, where the units are in JulianDate, while the y-axis
will be plotted in magnitude. Note: the y-axis is inverted. One graph is created for
each of the light curves in the observed data file. These graphs will be saved to a
folder in the licht-cpp/nlm/build directory called “plot_output”.

File Output
When the “fileOutput” flag in the UserInput.txt file is set to true, a file containing
the predicted light curve data will be saved. This file will be formatted to contain
three columns: JulianDate, magnitude values, and the label associated with each
light curve. This file will be saved to a folder in the licht-cpp/nlm/build directory
called “predicted_data_output”.

Terminal Output
When the “terminalOutput” flag in the UserInput.txt file is set to true, printed
output detailing the parameters estimated values and corresponding chi square
value will be displayed to the users terminal. Each step that the NLM takes in the
process of minimization will result in the output of estimated parameter values and
the current chi square value at that step.

Renders
When the “renders” flag in the UserInput.txt file is set to true, a series of images for
the predicted light curve will be produced. This functionality is extended from the
liblicht-cpp.a library. In the case of the NLM, the number of images corresponds to
the number of JulianDate times found in the observed data file. The images will be
saved to a folder in the licht-cpp/nlm/build directory called “renders”.

Running
When creating the NLM, a main focus was the ease of use associated with using the
module. After the cmake and make commands that are necessary to build the NLM
have been executed, no other build process is necessary. From this point on, the user
may call the NLM from the build directory (licht-cpp/nlm/build) as needed.

General operation:

● The user input file is filled out

16

● An observed data file is supplied
● Call the NLM using the command ./nlm
● Interpret output

As for the output of the NLM, this is decided based on the optional flags set by the
user within the user input file.

Demo
A short demo of entering data into the userInput.txt file, running the NLM and
displaying the output of the NLM can be found under the “Demos” section on the
team’s website . 6

Testing
To run the unit tests, call the tester from the build directory using the command
./tester. Otherwise, just interface with the NLM.

If there are any issues or any additional help is required regarding the NLM module,
please refer to the troubleshooting section below. If there are further questions,
please refer to the emails listed at the end of the document and feel free to contact
either Matthew Amato-Yarbrough or Batai Finley.

3.4 GUI
The GUI was created so that the users would have a more efficient way to run and
use the forward model. Due to the large complexities needed for the forward model,
there are several requirements and constraints so that the user does not have any
interruptions when using the GUI.

When using the GUI for the forward model, there are many specific requirements
that must be met when inputting parameters.

Parameter Input Requirements
Files
All files that users would like to use within the forward model must be placed
within the GUI/data directory. For file input, the forward model requires that all
ephemeris files and observed data files have the extension ‘“.txt”. Once the user has
placed the external file into the data/ directory, and ensured that it is a “.txt” file,
the file will be available for use within the forward model. Please use the following
syntax for all file input’s within the GUI:

6 ​https://www.cefns.nau.edu/capstone/projects/CS/2020/Andromeda-S20/

17

https://www.cefns.nau.edu/capstone/projects/CS/2020/Andromeda-S20/

● “SampleInputFile.txt”

All files must follow one of the two possible templates:

Figure 9: Formats used by the Sun and Primary ephemeris files

18

Figure 10: Format used by the observed date file

Vectors
Many of the parameters used within the forward model use vectors as inputs. When
inputting any vector values please follow the following syntax:

● “#,#,#”

3D Vectors
Two parameters within the forward model use the type of 3D Vectors. Due to the
nature of these values, the values have been split into two separate text inputs, to
input these parameters please follow the following syntax:

● B1: “#,#,#”
● B2: “#,#,#”

19

Settings Requirements
When using the GUI, there are two setting requirements that must be set before any
forward model call can begin.

Object(s) Setting
For the objects setting, before use of the forward model, as the user, you must
decide whether the call will use one or two objects. If one object is selected several
parameters will be unavailable to use.

Hapke Parameter Setting
For the Hapke parameter setting, the user must first decide whether they would like
the default Hapke parameters (defined within ForwardModel.cpp) or their own
custom Hapke parameters. If the user chooses to use the default parameters, all
associated parameters will be locked so the user cannot change these values.

Usage
Using the forward model GUI is a very simple process. Once the code has been
compiled using qmake and make(to generate the makefile) the user must then run
the executable. To run the executable use the following command from the
command line:

● ./ForwardModelUI

After that command has been run, the GUI will be displayed on the screen for usage.

Demo
A short demo of entering data into the GUI, calling the forward model and
displaying the output of the GUI can be found under the “Demos” section on the
team’s website . 7

If there are any issues or any additional help is required regarding the GUI module,
please refer to the troubleshooting section below. If there are further questions,
please refer to the emails listed at the end of the document and feel free to contact
Bradley Donn Kukuk.

3.5 Video Generator
As the video generator is a small addition, its installation and use will be covered in
this section. To use the video generator, FFmpeg must be installed. Since there is a

7 ​https://www.cefns.nau.edu/capstone/projects/CS/2020/Andromeda-S20/

20

https://www.cefns.nau.edu/capstone/projects/CS/2020/Andromeda-S20/

wide variety of ways to install this software, we would like to refer the user to view
the download page for FFmpeg on their website . 8

The video generator is a script that compiles images that are in the “renders” folder
of the forward model, NLM, or GUI. The user simply needs to execute the script from
the licht-cpp/script directory using “./videoGenerator” and follow the given
prompt. Before running, the user needs to check the renders. The render name will
be something similar to NAME_Primary_###.jpeg. The name of the file will be
required as input for one of the prompts asked when the script. Moreover,
depending on how many integers exist for the “###” space, the user will need to
input this number into the script when prompted. For example, an image might be
named “SilaNunam_Primary_05.jpeg''. Thus, there are 2 integers, and the user
would specify the number to be 2. The images were formatted as something similar
to “SilaNunam_Primary_001.jpeg”, there would be 3 integers and the user would
specify this number when prompted.

If there are any issues or any additional help is required regarding the Video
Generator module, please refer to the troubleshooting section below. If there are
further questions, please refer to the emails listed at the end of the document and
feel free to contact Matthew Amato-Yarbrough.

4. Maintenance
This product is low-maintenance and does not require any specific activities done to
ensure its long-term health. The only aspect to note is in the topic of dependencies.

To reduce the required set-up, many dependencies have been stored in the codebase
itself. As these dependencies have new releases, the versions in the codebase remain
the same. This is beneficial in the fact that updates will not break the code, but
disadvantageous when these updates provide performance and stability
improvements. Thus, the client may consider manually updating these
dependencies once every couple years.

4.1 Licht-cpp Dependencies
To update dependencies, download the new version and replace the old version in
the ‘lib’ folder:

● lib/eigen3.3.7 → Eigen version 3.3.7

8 ​https://www.ffmpeg.org/download.html

21

https://www.ffmpeg.org/download.html

● lib/googletest → GoogleTest version 1.7.0
● lib/idl → IDL header file, no need to update
● lib/tinyjpeg → TinyJPEG library, no need to update

If changing the folder name, such as eigen3.3.7 to eigen3.3.8, the respective
directory must be changed within CMakeLists.txt. They are simply stored near the
top of the file and are easy to modify.

4.2 NLM Dependencies
To update dependencies, download the new version and replace the old version in
the ‘lib’ folder:

● lib/matplotlibcpp/matplotlibcpp.h → matplotlibcpp header file, no need to
update

● lib/googletest → GoogleTest version 1.7.0
● lib/amoebaNumericalRecipes/amoeba.h → Numerical Recipes header file, no

need to update
● lib/amoebaNumericalRecipes/nr3.h → Numerical Recipes header file, no

need to update

4.3 GUI Dependencies
All dependencies needed for the forward model GUI are as followed:

● qmake 3.0 or higher
● qt version 5 or higher
● compiled ForwardModel library (liblicht-cpp.a)

5. Troubleshooting
5.1 Forward Model
There are generally three types of problems that can arise:

● Build problems
● Input problems
● Logic problems

22

First and foremost, ensure the code is running correctly on your system by running
the “tester”executable that comes from the compilation step. Ensure all tests pass
before using the code. Build problems would occur during the set-up step. CMake is
good in providing error messages about dependencies, while the actual make
process can have some cryptic messages. More often than not, any build errors have
messages that can be resolved by searching for a solution online. If not, the best
course of action is to contact Zach, as he wrote the build system. There are many
parameters involved in a build system and, without any experience debugging it, it
is not suggested to try troubleshooting.

When the code does not work properly or crashes, the most common cause is invalid
IDL parameters. C++ is highly sensitive to the types provided by IDL. For instance, if
a double is expected and a float is given, the input is invalid. Before attempting to
debug the software, triple-check that every parameter is the correct type. Many
times we have encountered that a simple typo caused the crash, such as not
including a “D” after a number or using the wrong type of slashes for file paths.
After that, there is a ‘debug’ parameter that prints out much of the input that the
forward model received. It also prints out at which stage the code failed. Enable it
by setting the value to 1. Additionally, exceptions are thrown for specific cases of
bad input. For instance, if an invalid ephemeris file path was given, an exception is
thrown stating that. Use the output to determine if your input was interpreted
correctly and to determine what section of code it fails in.

One huge caveat is that IDL does not seem to support the exceptions thrown from
within C++. At least, this is true for version 7.0. Thus, everything stated in the above
paragraph would likely be false for an IDL user. To account for this, an additional
error-handling layer has been implemented. Any exceptions thrown in C++ that are
not segmentation faults are caught and stored in variables allocated in IDL. In this
manner, IDL users can still see the errors. More documentation lies within the demo
script.

If IDL still crashes, i.e. if a segmentation fault is thrown, the most effective
troubleshooting is using a C++ debugger. The most common tools for this are GDB
and/or valgrind. The easiest way to debug is to create a test in
“test/TestForwardModel.cpp” and recreate the IDL parameters by mimicking one of
the existing tests. Re-compile the code (if a new test file was added, also call CMake)
and call the tester executable. At this point, the user must be comfortable
debugging C++ code. If not, the best course of action is to contact one of the
developers with a bug report.

23

5.2 Triaxial Ellipsoids
As referred to in section 3.1, generating a single asteroid using an ellipsoid will
produce incorrect lighting and, therefore, produce a faulty light curve. A way to
solve this issue was discovered, which was by including a second object. To remedy
this, create an object (preferably a sphere as they are the most simplistic) with the
radius size of 0. This allows for the forward model to recognize that there is a
second object and provide correct lighting for the ellipsoid, while not rendering the
second object.

5.3 NLM
When using the NLM there are typically two types of problems that can arise:

● Build Problems
● User Input Problems
● Indefinite minimization

Build Problems
There are only two issues that can occur when trying to build the NLM. Either the
user does not possess the necessary CMake version, Python version or both needed
to build the NLM. To make sure this issue does not occur the installation of CMake
3.4 or higher is necessary. Additionally, Python 2.7 and the corresponding developer
edition is necessary to compile the NLM.

User Input Problem
Several issues can arise when the user inputs improper values into the
UserInput.txt files. Commonly, these issues stem from supplying the
ephemerisPrimaryFile, ephemerisSunFile, and observedDataFilePath parameters
with incorrect data. This problem can occur in a variety of ways such as providing
the incorrect file path, a path to a file that does not exist or a path to a misnamed
file or directory. With this in mind, checking that the paths and names of the files
being supplied are correct is necessary . It should also be noted that when inputting
the name of the file to be used for any of these parameters that the “.txt” extension
is needed as well. This is to prevent the input of files that can not be parsed by the
NLM or the forward model.

Indefinite Minimization
After running the NLM, users may experience the NLM continuously estimating the
parameters for long periods of time. In some instances this process may be
indefinite as the NLM continuously explores the parameters space for better

24

parameter estimates. To prevent this from occurring, users will have to tinker with
the values they supply the UserInput.txt file. Specifically, the values of the
tolerance level and the parameters that they have chosen to estimate.

5.4 GUI
While the GUI is built to handle most errors with detailed descriptions on how to fix
these issues, there are a few issues known that are not covered by error handling.
They are as follows:

● Unable to read external .txt file
● GUI timeout

Unable to Read External .txt File
There are a few reasons as to why this error may arise, and solving this issue is
fairly simple.

● File was not placed within the GUI/data/ directory
○ If the file is not placed within the GUI/data/ directory, the GUI will not

be able to find or read in the file. Simply place the file within the
directory and the issue will be solved

● File type is not .txt
○ The only allowed external file type that can be passed to the forward

model is a “.txt” file. If you are using any other file type, please try and
convert that file to a .txt and the forward model will be able to accept
the file.

● “Unable to read file” error
○ If this file occurs, the file that was input does not meet the specified

layout for the forward model call. Please refer to the templates used
above.

GUI Timeout
For the forward model GUI to time out or “get stuck” the user must have input a
value that is not excessively large, or excessively small. The GUI is not stuck, it is
running the program with the parameters requested. If the forward model call lasts
longer than five minutes, the forward model GUI will shut down due to a timeout
functionality. This time functionality was created to preserve the users hardware as
some forward model calls may run for several hours with excessive data.

25

6. Conclusion
Team Andromeda is glad to have continued the development of such an interesting
project. We hope the solution serves you well for many years to come.

With best wishes from the Team Andromeda development team,
Matthew Amato-Yarbrough (​mba75@nau.edu ​)
Batai Finley (​baf238@nau.edu ​)
Bradley Donn Kukuk (​bdkukuk@zohomail.com ​)
John Jacobelli (​johnpjacobelli@gmail.com ​)
Jessica Smith (​j.l.smith.software@gmail.com ​)

While we are moving on to professional careers, we would be happy to answer any
questions that arise about the codebase.

For further questions regarding the initial development of licht-cpp, please contact
the original development team Paired Planet Technologies:
Zach Kramer (​kramer.zachary.nau@gmail.com ​)
Brian Donnelly (​bridonnelly17@gmail.com ​)

26

mailto:mba75@nau.edu
mailto:baf238@nau.edu
mailto:bdkukuk@zohomail.com
mailto:johnpjacobelli@gmail.com
mailto:j.l.smith.software@gmail.com
mailto:kramer.zachary.nau@gmail.com
mailto:bridonnelly17@gmail.com

